[Keyboard] hexon38 and Dual-role key implementation (#4709)

* initial dual-role key implementation for hexon38

* PR feedback, adding README

* Moving to handwired subdir

* Additional PR feedback
This commit is contained in:
Jason Pepas 2019-01-12 23:30:19 -06:00 committed by Drashna Jaelre
parent baaa138e90
commit 9ef46494b2
6 changed files with 562 additions and 0 deletions

View file

@ -0,0 +1,60 @@
// see https://github.com/pepaslabs/hexon38
#pragma once
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER pepaslabs
#define PRODUCT hexon38
#define DESCRIPTION "A handmade non-split ergonomic 38-key keyboard, inspired by the lil38. See https://github.com/pepaslabs/hexon38."
/* key matrix size */
#define MATRIX_ROWS 4
#define MATRIX_COLS 12
/* key matrix pins */
#define MATRIX_ROW_PINS { B0, F0, B2, F4 }
#define MATRIX_COL_PINS { C6, D3, D2, D1, D0, B7, F6, F7, B6, B5, B4, D7 }
#define UNUSED_PINS
/* COL2ROW or ROW2COL */
#define DIODE_DIRECTION ROW2COL
/* number of backlight levels */
#ifdef BACKLIGHT_PIN
#define BACKLIGHT_LEVELS 0
#endif
/* Set 0 if debouncing isn't needed */
#define DEBOUNCING_DELAY 5
/* key combination for command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
)
#ifdef RGB_DI_PIN
#define RGBLIGHT_ANIMATIONS
#define RGBLED_NUM 0
#define RGBLIGHT_HUE_STEP 8
#define RGBLIGHT_SAT_STEP 8
#define RGBLIGHT_VAL_STEP 8
#endif
// Disabled features:
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
//#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
//#define LOCKING_RESYNC_ENABLE
/* prevent stuck modifiers */
//#define PREVENT_STUCK_MODIFIERS

View file

@ -0,0 +1,3 @@
// see https://github.com/pepaslabs/hexon38
#include "hexon38.h"

View file

@ -0,0 +1,17 @@
// see https://github.com/pepaslabs/hexon38
#pragma once
#include "quantum.h"
#define LAYOUT( \
K002, K003, K004, K005, K006, K007, K008, K009, \
K100, K101, K102, K103, K104, K105, K106, K107, K108, K109, K110, K111, \
K200, K201, K202, K203, K204, K207, K208, K209, K210, K211, \
K302, K303, K304, K305, K306, K307, K308, K309 \
) { \
{ KC_NO, KC_NO, K002, K003, K004, K005, K006, K007, K008, K009, KC_NO, KC_NO }, \
{ K100, K101, K102, K103, K104, K105, K106, K107, K108, K109, K110, K111 }, \
{ K200, K201, K202, K203, K204, KC_NO, KC_NO, K207, K208, K209, K210, K211 }, \
{ KC_NO, KC_NO, K302, K303, K304, K305, K306, K307, K308, K309, KC_NO, KC_NO } \
}

View file

@ -0,0 +1,407 @@
// see https://github.com/pepaslabs/hexon38
#include "hexon38.h"
#define A_ KC_A
#define B_ KC_B
#define C_ KC_C
#define D_ KC_D
#define E_ KC_E
#define F_ KC_F
#define G_ KC_G
#define H_ KC_H
#define I_ KC_I
#define J_ KC_J
#define K_ KC_K
#define L_ KC_L
#define M_ KC_M
#define N_ KC_N
#define O_ KC_O
#define P_ KC_P
#define Q_ KC_Q
#define R_ KC_R
#define S_ KC_S
#define T_ KC_T
#define U_ KC_U
#define V_ KC_V
#define W_ KC_W
#define X_ KC_X
#define Y_ KC_Y
#define Z_ KC_Z
// Dual-role keys: modifier when held, alpha when tapped.
#define A_CTL CTL_T(KC_A)
#define S_ALT ALT_T(KC_S)
#define D_GUI GUI_T(KC_D)
#define F_SFT SFT_T(KC_F)
#define J_SFT SFT_T(KC_J)
#define K_GUI GUI_T(KC_K)
#define L_ALT ALT_T(KC_L)
#define COLN_CTL CTL_T(KC_SCLN)
#define ______ KC_TRNS
#define LSHIFT KC_LSHIFT
#define RSHIFT KC_RSHIFT
#define COMMA KC_COMM
#define SLASH KC_SLSH
#define SPACE KC_SPC
#define TAB KC_TAB
#define BKSPC KC_BSPC
#define ENTER KC_ENT
#define PERIOD KC_DOT
#define BASE_LAYER LAYOUT
#define BLANK_LAYER LAYOUT
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
BASE_LAYER(
// ,--------+--------+--------+--------. ,--------+--------+--------+--------.
W_ , E_ , R_ , T_ , Y_ , U_ , I_ , O_ ,
//|--------+--------+--------+--------+--------+--------| |--------+--------+--------+--------+--------+--------.
Q_ , A_CTL , S_ALT , D_GUI , F_SFT , G_ , H_ , J_SFT , K_GUI , L_ALT ,COLN_CTL, P_ ,
//|--------+--------+--------+--------+--------+--------' `--------+--------+--------+--------+--------+--------|
B_ , Z_ , X_ , C_ , V_ , M_ , COMMA , PERIOD , SLASH , N_ ,
//`--------+--------+--------+--------+--------' `--------+--------+--------+--------+--------'
// ,--------+--------+--------+--------. ,--------+--------+--------+--------.
LSHIFT , SPACE , TAB , DEBUG , SPACE , BKSPC , ENTER , RSHIFT
// `--------+--------+--------+--------' `--------+--------+--------+--------'
),
BLANK_LAYER(
// ,--------+--------+--------+--------. ,--------+--------+--------+--------.
______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ ,
//|--------+--------+--------+--------+--------+--------| |--------+--------+--------+--------+--------+--------.
______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ ,
//|--------+--------+--------+--------+--------+--------' `--------+--------+--------+--------+--------+--------|
______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ , ______ ,
//`--------+--------+--------+--------+--------' `--------+--------+--------+--------+--------'
// ,--------+--------+--------+--------. ,--------+--------+--------+--------.
______ , ______ , ______ , ______ , ______ , ______ , ______ , ______
// `--------+--------+--------+--------' `--------+--------+--------+--------'
)
};
// a linked list of pending key events (press or release) which we haven't processed yet.
struct _pending_key_t {
uint16_t keycode;
keyrecord_t record;
struct _pending_key_t *next;
};
typedef struct _pending_key_t pending_key_t;
// worst case is 10 down strokes and 1 up stroke before we can start disambiguating.
#define RINGSIZE 11
// a ring buffer and linked list to store pending key events (presses and releases).
// (basically, this is a fixed-allocation linked list.)
struct _kring_t {
// the actual key events.
pending_key_t items[RINGSIZE];
// the index of the oldest item, or -1 if no items.
int8_t ifirst;
// the index of the most recently added item, or -1 if no items.
int8_t ilast;
// the number of items in the ring.
uint8_t count;
// the head of the linked list.
pending_key_t *head;
};
typedef struct _kring_t kring_t;
// safe accessor to the i-th item of the linked list (returns pointer or NULL).
pending_key_t* kring_get(kring_t *ring, uint8_t i) {
if (i >= ring->count) {
return NULL;
}
uint8_t j = (ring->ifirst + i) % RINGSIZE;
return &(ring->items[j]);
}
// return the last key in the list of buffered keys.
pending_key_t* kring_last(kring_t *ring) {
if (ring->count == 0) {
return NULL;
}
return kring_get(ring, ring->count - 1);
}
// remove the oldest item from the ring (the head of the list).
void kring_pop(kring_t *ring) {
if (ring->count > 0) {
ring->ifirst += 1;
ring->ifirst %= RINGSIZE;
ring->head = ring->head->next;
ring->count -= 1;
}
}
// add an item to the ring (append to the list).
void kring_append(kring_t *ring, uint16_t keycode, keyrecord_t *record) {
if (ring->count >= RINGSIZE) {
// uh oh, we overflowed the capacity of our buffer :(
return;
}
// if the ring is empty, insert at index 0.
if (ring->count == 0) {
ring->count += 1;
ring->ifirst = 0;
ring->ilast = 0;
ring->head = &(ring->items[0]);
}
// else, append it onto the end.
else {
ring->count += 1;
ring->ilast += 1;
ring->ilast %= RINGSIZE;
}
// the index at which we should insert this item.
int8_t i = ring->ilast;
// insert the item.
ring->items[i].keycode = keycode;
ring->items[i].record.event = record->event;
#ifndef NO_ACTION_TAPPING
ring->items[i].record.tap = record->tap;
#endif
ring->items[i].next = NULL;
// update the previous item to point to this item.
if (ring->count > 1) {
kring_get(ring, ring->count - 2)->next = &(ring->items[i]);
}
}
kring_t g_pending;
void matrix_init_user(void) {
g_pending.ifirst = -1;
g_pending.ilast = -1;
g_pending.count = 0;
g_pending.head = NULL;
}
void matrix_scan_user(void) {}
/*
a_ a-: emit a
a_ b_ b- a-: emit SHIFT+b
a_ b_ a- b-: emit a, b
dual1down, dual1up -> norm1down, norm1up
dual1down, norm2down, norm2up -> mod1down, norm2down, norm2up
dual1down, norm2down, dual1up -> norm1down, norm2down, norm1up
dual1down, dual2down, norm3down, norm3up -> mod1down, mod2down, norm3down, norm3up
so, a dual key can't be disambiguated until the next keyup of a keydown (not including keyups from keys before it).
*/
bool is_ambiguous_kc(uint16_t kc) {
// See the MT() define: https://github.com/qmk/qmk_firmware/blob/master/quantum/quantum_keycodes.h#L642
// See the QK_MOD_TAP case: https://github.com/qmk/qmk_firmware/blob/master/quantum/keymap_common.c#L134
uint8_t mod = mod_config((kc >> 0x8) & 0x1F);
return mod != 0;
}
bool is_down(pending_key_t *k) {
return k->record.event.pressed;
}
bool is_up(pending_key_t *k) {
return !is_down(k);
}
bool keys_match(pending_key_t *a, pending_key_t *b) {
return a->record.event.key.col == b->record.event.key.col
&& a->record.event.key.row == b->record.event.key.row;
}
// both the down and corresponding upstroke of a keypress.
struct _pending_pair_t {
pending_key_t *down;
pending_key_t *up;
};
typedef struct _pending_pair_t pending_pair_t;
// returns true if this keydown event has a corresponding keyup event in the
// list of buffered keys. also fills out 'p'.
bool is_downup_pair(pending_key_t *k, pending_pair_t *p) {
// first, make sure this event is keydown.
if (!is_down(k)) {
return false;
}
// now find its matching keyup.
pending_key_t *next = k->next;
while (next != NULL) {
if (keys_match(k, next) && is_up(next)) {
// found it.
if (p != NULL) {
p->down = k;
p->up = next;
}
return true;
}
next = next->next;
}
// didn't find it.
return false;
}
// given a QK_MOD_TAP keycode, return the KC_* version of the modifier keycode.
uint16_t get_mod_kc(uint16_t keycode) {
uint8_t mod = mod_config((keycode >> 0x8) & 0x1F);
switch (mod) {
case MOD_LCTL:
return KC_LCTL;
case MOD_RCTL:
return KC_RCTL;
case MOD_LSFT:
return KC_LSFT;
case MOD_RSFT:
return KC_RSFT;
case MOD_LALT:
return KC_LALT;
case MOD_RALT:
return KC_RALT;
case MOD_LGUI:
return KC_LGUI;
case MOD_RGUI:
return KC_RGUI;
default:
// shrug? this shouldn't happen.
return keycode;
}
}
bool is_mod_kc(uint16_t keycode) {
switch (keycode) {
case QK_MODS ... QK_MODS_MAX:
return true;
default:
return false;
}
}
void interpret_as_mod(pending_pair_t *p) {
// see https://github.com/qmk/qmk_firmware/issues/1503
pending_key_t *k;
k = p->down;
if (k != NULL) {
k->keycode = get_mod_kc(k->keycode);
}
k = p->up;
if (k != NULL) {
k->keycode = get_mod_kc(k->keycode);
}
}
void interpret_as_normal(pending_pair_t *p) {
pending_key_t *k;
k = p->down;
if (k != NULL) {
k->keycode = k->keycode & 0xFF;
}
k = p->up;
if (k != NULL) {
k->keycode = k->keycode & 0xFF;
}
}
void execute_head_and_pop(kring_t *ring) {
pending_key_t *head = kring_get(ring, 0);
uint16_t kc = head->keycode;
if (is_mod_kc(kc)) {
if (is_down(head)) {
dprintf(" %s: mod down 0x%04X\n", __func__, kc);
set_mods(get_mods() | MOD_BIT(kc));
} else {
dprintf(" %s: mod up 0x%04X\n", __func__, kc);
set_mods(get_mods() & ~MOD_BIT(kc));
}
} else {
if (is_down(head)) {
dprintf(" %s: key down 0x%04X\n", __func__, kc);
register_code16(kc);
} else {
dprintf(" %s: key up 0x%04X\n", __func__, kc);
unregister_code16(kc);
}
}
kring_pop(ring);
}
// try to figure out what the next pending keypress means.
bool parse_next(kring_t *pending) {
pending_pair_t p;
pending_key_t *first = kring_get(pending, 0);
if (!is_ambiguous_kc(first->keycode)) {
// this pending key isn't ambiguous, so execute it.
dprintf(" %s: found unambiguous key\n", __func__);
execute_head_and_pop(pending);
return true;
} else if (is_ambiguous_kc(first->keycode) && is_up(first)) {
dprintf(" %s: interpreting keyup as mod\n", __func__);
p.down = NULL;
p.up = first;
interpret_as_mod(&p);
execute_head_and_pop(pending);
return true;
} else if (is_downup_pair(first, &p)) {
// 'first' was released before any other pressed key, so treat this as
// a rolling series of normal key taps.
dprintf(" %s: found down-up pair, interpreting as normal key\n", __func__);
interpret_as_normal(&p);
execute_head_and_pop(pending);
return true;
} else {
// if another key was pressed and released while 'first' was held, then we
// should treat it like a modifier.
pending_key_t *next = first->next;
while (next != NULL) {
if (is_downup_pair(next, NULL)) {
dprintf(" %s: found subsequent downup pair, interpreting head as mod\n", __func__);
p.down = first;
p.up = NULL;
interpret_as_mod(&p);
execute_head_and_pop(pending);
return true;
}
next = next->next;
}
// we can't disambiguate 'first' yet. wait for another keypress.
dprintf(" %s: can't disambiguate (yet)\n", __func__);
return false;
}
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
if (keycode == DEBUG) {
return true;
}
if (g_pending.count == 0 && !is_ambiguous_kc(keycode)) {
// we have no pending keys and this key isn't ambiguous, so we should
// just let QMK take care of it.
dprintf("%s: handled by qmk\n", __func__);
return true;
} else {
dprintf("%s: got dual-role key\n", __func__);
// append the keypress and then try parsing all pending keypresses.
kring_append(&g_pending, keycode, record);
while (g_pending.count > 0) {
dprintf("%s: looping through %d keys...\n", __func__, g_pending.count);
if (!parse_next(&g_pending)) {
// one of our keypresses is ambiguous and we can't proceed until
// we get further keypresses to disambiguate it.
dprintf("%s: %d pending keys are ambiguous\n", __func__, g_pending.count);
break;
}
}
return false;
}
}

View file

@ -0,0 +1,11 @@
# hexon38
QMK support for the [hexon38](https://github.com/pepaslabs/hexon38).
## Building
```
$ cd qmk_firmware
$ make handwired/hexon38
```

View file

@ -0,0 +1,64 @@
# see https://github.com/pepaslabs/hexon38
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection
# Teensy halfkay
# Pro Micro caterina
# Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# atmega32a bootloadHID
BOOTLOADER = halfkay
# Enabled build options:
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = yes # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
NKRO_ENABLE = yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# Disabled build options:
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
AUDIO_ENABLE = no
RGBLIGHT_ENABLE = no